Traditional room-equalization involves exciting one loudspeaker at a time and deconvolving the loudspeaker-room response from the recording. As the number of loudspeakers and positions increase, the time required to measure loudspeaker-room responses will increase. In this paper, we present a technique to deconvolve impulse responses after exciting all loudspeakers at the same time. The stimuli are shifted relative to a base-stimuli and are optionally pre-processed with arbitrary filters to create specific sounding signals. The stimuli shift ensures capture of the low-frequency reverberation tail after deconvolution. Various deconvolution techniques including correlation-based, and adaptive filter-based, are presented. The performance is characterized in terms of plots and objective metrics using responses from the Multichannel Acoustic Reverberation Dataset (MARDY) dataset.